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IV. CoNCLUSION

The calculation of eigenmodes in uniform wave guides or in
resonant cavities by integral equation and moment method sometimes
generates non physical solutions. In this paper a practical criterion
for a correct choice of the weighting functions is demonstrated. Its
rigorous implementation would be calculus intensive but we show
that an approximate implementation efficiently eliminates spurious
solutions generated by the conventional Galerkin’s method without
lengthening computations.
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A New FEM Approach for Open
Boundary Laplace’s Problem

Dong Xingqi and An Tongyi

Abstract—An efficient improved finite element method (FEM) is pre-
sented for electromagnetic Laplace’s problems with open boundary. The
whole infinite domain is divided into a set of infinite elements instead
of ordinary finite elements. Since a special FEM discretization and FEM
solving procedure are used, it can not only take much less computer
memory than that the conventional FEM needs, but also avoid the
calculation error introduced by the truncated boundary or absorbing
boundary condition used in conventional FEM.

I. INTRODUCTION

Recently, FEM has been more and more widely used for many
electromagnetic problems with open boundary. Because in FEM the
solution domain is discretized with finite elements, only finite domain
problems can be handled directly. So, the solution domain with
open boundary must be truncated. A relatively simple technique to
implement is to select an external boundary with a zero potential
to truncate the solution domain. Another alternative is to use an
appropriate absorbing boundary condition or infinite element [1]-[3].

This paper presents a new FEM technique for static electromagnetic
problems with open boundary. It utilizes a special discretization form
to divide the whole infinite domain into infinite triangular elements.
So no truncated boundary or absorbing boundary is needed and
the calculation error produced by appropriate boundary condition is
avoided. As an example, the capacitance matrix for the two coupled
microstrips with open-boundary is calculated and the numerical
results are compared with those obtained by other methods.

II. New FEM PROCEDURE

We begin with our discussion of a two-dimensional electrostatic
open boundary problem. Assuming that the solution domain is €2
and its open boundary is I';. We use a regular polygon I'y, which
contains the solution domain {2, to divide the whole infinite domain
Q into two parts (see Fig. 1). Defining that the region within I'y is
€., and the one out of I'o is Qous. o may be placed very close to
T's. If T’ itself is a regular polygon, then it is selected as I'o.

A. Analysis of Qin

Because the region €2, is a finite domain, it can be treated by
conventional FEM. The electromagnetic field distribution can be
obtained from the scalar potential ®(x, y) satisfying the Laplace’s
equation with associated Dirichlet or Neumann boundary condition.
The region £2,, is subdivided to triangular finite elements and the
stiffness matrix A, can be obtained by assembling each element
coefficient matrix. Assuming that the number of nodes on I'o is 3y
and the scalar potentials on Ty form a column vector ®o of order
My, the number of remaining nodes is M,,, and the corresponding
potentials form a column vector ®., of order M,.. Thus, the
functional within the region €2,, can be obtained by
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Fig. 1. Similar discretzation of infinite region wout.
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Fig. 2. Coupled microstrips (¢ = 2ep, @ = 11b, h = b, w = 3b, d = 20,
s = 1.5b).

B. Analysis of Qout

The region 24 is a infinite domain. The FEM discretization is
taken as following: first, a coordinate center O within L'y is selected.
Next, a set of infinite similar polygons of [y are taken as shown
in Fig. 2. The point O is the similar center of polygons and the
constant £ is similar ratio. The set of similar polygons are denoted as
Ty, Ig, +++, Tk, - -+ and the region between 'y and T'y, is denoted
as kth layer. Each layer is divided into quadrilaterals of number
My — 1 by the rays out from similar center point O to nodes on I'g.
(Note that the polygon apexes must be nodes.) Then each quadrilateral
is cut into two triangles. It is necessary that the discretization of every
layer is similar as shown in Fig. 1. Assuming that scalar potentials
on Iy is ®. After the element stiffness matrix is obtained by means
of conventional FEM, the layer stiffness matrix can be formed by
assembling all finite elements on one layer. It can be written as

K, -AT
(-—;)l K(’)) 2

where Ko, K}, and A are all matrices of order M. Because every
layer is discretized similarly, all layer stiffnesses are identical. So, if
the functional of kth layer is

Ky —AT\ [®n_
r=yels oD (B 2 (%) o

then, the functional of the whole infinite domain €2.,: is a infinite
sum as

Four =Y Fi. “
k=1

C. Synthesis of Qin and Qout
Considering both ;,, and €2,.:, the functional of the whole 2 can
be written as

F:an +Fout- (5)

Because the first derivatives of the functional (5) with respect to the
node variables should be zero, we can have a set of equations of
infinite order :

KL®in + K00 =0

K ®i + K200 + Ko®o — AT®, =0

—A%) + K& — A7®, =0 ©)

—ADp  + Ky — AT®p1 =0

where K = K, + Kj. It is impossible to solve the (6) directly. It is
easy to prove that there exists a matrix X of order My which satisfies

Bppr = XDy @

where X is called transfer matrix. Letting ¥ = 0, from (6) and (7)
we have

KX®:, + K2®+ Ko®o — ATX®, =0 @®)
Ko =Ko—ATX ©)
Kl ®in + K7 @0 + Kou®o = 0. (10)
Combining (6) and (10), we have
A | O LI

Imposing boundary condition within the solution domain 2o, the
scalar potentials ®,, and ®¢ can be solved from (11). Then from
(7), the scalar potentials &, of the region {2,,: can be obtained.

D. Calculation of Transfer Matrix X
Combine (7) with (6), then -

~A+ KX -ATX%=0. (12)
Let
K -4
B = (I 0 )
AT 0
Ry = ( 0 I) 13)
where I is unit matrix. From (6) we have:
T P11
Ry (Qkfl) = R» ( o ) (14)

Assuming that A and g are the eigenvalues and eigenveétors of X,
then
Xg=Ag. 15)

Letting £ = 1 and ®y = ¢ in (14), (14) together with (7) and (15)

will take the form
g g

Equation (16) can now be solved by any standard generalized
eigenvalue analysis computer package for the eigenvalues of number

(16)



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO. 1, JANUARY 1996 159

TABLE 1
CAPACITANCE MATRIX FOR THE COUPLED MICROSTRIPS OF FIG, 2

Reference  Shield ABC Higher Order Infinite FEM the paper

[6] 4] [4] ABC[4] [5]
Ci; 10719 0.9224 1.091 0.9249 0.9230 0.9311 0.9228
01510711 -0.8504  -0.4712 -0.8061  -0.8377 -0.8015 -0.8401

Fig. 3. Finite element mesh with transition layers.

2Mpy and the associated eigenvectors, which include the eigenvalues
and the eigenvectors of transfer matrix X . Then we calculate

K -xAT -4
det(R;[—)\Rz)-—det ( 7 —)\I)

=(-1)"det(—A+ XK — 2247y  an

where det denotes the determinant of matrix. Because the matrix A
is symmetric, (17) is a symmetric polynomial with respect to A, If
X # 0 is a eigenvalue then 1/ will be another one. It can be proved
from (7) that all eigenvalues of X must be not greater than one, so
it is easy to obtain the eigenvalues and the associated eigenvalues of
X. Then X can be obtained from (15).

E. Proof of (7)

The scalar potential within the infinite region Q... satisfies the
Laplace’s equation. Assuming that the scalar potentials ®, on I'g is
known, all scalar potentials within Q.. can be uniquely determined.
That is to say, ®: can be uniquely determined by ®g. Because the
Laplace’s equation and the associated functional are linear, ®; must
be determined linearly by ®o. Then, there must exist a real matrix
which satisfies

®, = X &o. (13)
Next, we take the linear transform z' = &z and y' = £y, where
¢ is the similar ratio between the layers of €..¢. The positions
of Ty, T'1,---.'x now have been shifted to the position of
Iy, T2, -+ - Tk41, correspondingly. Since the scalar potentials on
Qou: have the identical values in different coordinate systems, the
region within boundary 'y and the one within I’y have the same
solutions if the initial condition on I’y and Ty are identical. Therefore,
if the scalar potentials ®; is known, ®; can also be obtained

$y = X;. (19)

Continuing to make the same linear transform, we can obtain the (7).

III. APPLICATION

Consider the two coupled microstrips shown in Fig. 2. Its finite
element mesh is shown in Fig. 3. Because the number Ay of
boundary nodes is related to the stiffness matrix bandwidth and the
computation time of the transfer matrix, some transition layers has
been applied in Fig. 3. The capacitance matrix is calculated by the
above method. Table I shows the numerical results obtained by the
present method, together with those obtained by using a p.e.c shield,
the ABC, the higher order ABC [4], infinite FEM [5], and other
method [6]. Table I indicates that the present method can yield more
accurate results.

IV. CONCLUSION

The above mentioned new FEM procedure is useful for two-
dimension] and three-dimension electromagnetic Laplace’s problems
with open boundary. Because the whole region is discretized with
infinite elements and no appropriate boundary is needed, the calcula-
tion error produced by the truncated boundary or absorbing boundary
condition is avoided. The numerical results show that the caiculation
precision is very high.
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Thru Characteristics of a Coaxial Gap
(FDTD Model and Measurements)

Bruce G. Colpitts

Abstract—Thru characteristics of a coaxial cable interrupted by a small
gap are modeled and measured. Finite-difference time-domain (FDTD)
modeling is applied in cylindrical coordinates to semirigid coaxial cable
and to the intervening gap material. Both dispersive and nondispersive
gap materials are investigated. Gap loss and phase shift are accurately
predicted by this two-dimensional model which accounts for TEM and
TM modes in the gap and coaxial apertures. An application of the model
is to establish reference data for thin sample permittivity or moisture
measurements.

I. INTRODUCTION

A FDTD model 1n cylindrical coordinates is presented for a coaxial
cable and intervening small gap. That is the cable is severed and a
gap of up to one probe diameter (3.58 mm) is opened between the
ends. Modeled results are verified with measurements to demonstrate
accuracy for several gap sizes and materials. The coaxial gap is
proposed as a sensor for very localized permittivity measurements
of thin samples as an alternative to the coaxial reflection method
which requires stacking of thin samples [1], [2] or the semiempirical
approach used in [2] which requires two measurements of the same
sample. Neither method is suitable for continuous thin sample mois-
ture measurement. Since FDTD results are not readily invertible the
procedure for determination of permittivity would be to characterize
the gap response for a number of materials or moisture levels as part
of calibration and to then use an interpolation procedure to determine
the actual permittivity from the measured values. With sufficient
computational speed an iterative solver would be feasible. This paper
presents the FDTD numerical model along with measurements of
two thin samples for verification. This presentation deals with the
transmission response of the gap while in [3] the reflection properties
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of the coaxial cable have been considered and found to be accurately
predicted by this approach. Now with the reflection and transmission
properties well modeled and through the use of [4] one can either
iteratively or through a look-up procedure determine the material
properties.

II. NUMERICAL ANALYSIS

A lossless and nondispersive cable dielectric is assumed while the
gap material may have loss and dispersive characteristics. Dispersion
is accounted for through recursive relations similar to those in [5].
The model is two-dimensional with the center of the center conductor
forming a line of symmetry as in Fig. 1. This two-dimensional model
accounts for TEM and TM modes at the apertures and throughout the
gap but is not capable of modeling TE modes. This is not expected to
be a limiting factor since the actual problem has circular symmetry
and thus there are no mechanisms to excite TE modes [6]. Due to
the small cable size chosen for this study and the need to precisely
model gap details a cell size of 0.2 mm is chosen. This yields 52
cells from the inner conductor to the outer conductor in 3.58 mm
(0.141") cable or 392 cells per wavelength at 26.5 GHz. With this
small element size the Courant condition requires a correspondingly
small time step, in the tens of picosecond range, depending upon the
dielectric material selected. Field components used in this solution are
the axial and radial electric fields and the circumferential magnetic
field. Absorbing boundaries are of the first order Mur [7] type applied
to the axial electric field while the line of symmetry is accounted for
through symmetry of the magnetic field. Governing field equations
in cylindrical coordinates are given in pseudo code form below for
dispersive materials where the Debye equation and an additional
conductivity term are used to describe their frequency dependent
behavior as follows

” €S — €co . T
€ (w)—eoo—}—m—ja. (1)
Where the terms are defined as follows with their corresponding
values for water at 25° shown in brackets, €., = permittivity at infinite
frequency (4.9), es= static permittivity (78.52), ry = relaxation iime
(8.38 x 1071%), 5 = conductivity (0.0), and w = angular frequency

HC" 21,0y = HC™V*(I,J) + F *((EA™(I + 1,J)
— EA™(I,J))—(ER™(I,J+1)—ER™(I..])) (2)

ER"™(I1,J)=B*ER"(I,J)+ C *(HC"*Y*(I,] — 1)
~ HC"™Y2([.J)) + D*SR™(I,J) 3)

SR™TNI,J)=A*SR"(I,J)
+ 0.5 (A*ER™(I,J)+ ER*T (1,J)) (4

EA™N(I,J)= B*EA™(I,J)+ E*(HC""V*(1.J)
— HC™ ™[ ~1,J))+ C *(HC(I.J)
- HC(I -~ 1.J))+ D *SA™(I.J) (5)

SAMNI, Ty = A*SA™(I,J)+0.5 " (A“EA™(I,J)
+ EA™TH IO (6)
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