
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO. 1, JANUARY 1996 157

IV. CONCLUSION

The calculation of eigenmodes in uniform wave guides or in

resonant cavities by integral equation and moment method sometimes

generates non physical solutions. In this paper a practical criterion

for a correct choice of the weighting functions is demonstrated, Its

rigorous implementation would be calculus intensive but we show

that an approximate implementation efficiently eliminates spurious

solutions generated by the conventional Galerkin’s method without

lengthening computations.
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A New FlilM Approach for Open

Boundary Laplace’s Problem

Dong Xingqi and An Tongyi

Abstract-An efficient improved finite element method (FEM) is pre-
sented for electromagnetic Laplace’s problems with open boundary. The

whole infinite domain is divided into a set of infinite elements instead

of ordinary finite elements. Since a special FEM discretization and FEM
solving procedure are used, it can not only take much less computer
memory than that the conventional FEM needs, but also avoid the
calculation error introduced by the truncated bonndary or absorbing
boundary condition used iin conventionrd FEM.

I. INTRODUCTION

Recently, FEM has been more and more widely used for many

electromagnetic problems with open boundary. Because in FEM the

solution domain is discretized with finite elements, only finite domain

problems can be handled directly. So, the solution domain with

open boundary must be truncated. A relatively simple technique to

implement is to select an external boundary with a zero potential

to truncate the solution domain. Another alternative is to use an

appropriate absorbing boundary condition or infinite element [1 ]–[3].

This paper presents a new FEM technique for static electromagnetic

problems with open boundary. It utilizes a special discretization form

to divide the whole infinite domain into infinite triangular elements.

So no truncated boundary or absorbing boundary is needed and

the calculation error produced by appropriate boundary condition is

avoided. As an example, the capacitance matrix for the two coupled

microstrips with open-boundary is calculated and the numerical

results are compared with those obtained by other methods.

II. NEW FEM PROCEDURE

We begin with our discussion of a two-dimensionaf electrostatic

open boundary problem. Assuming that the solution domain is fl,

and its open boundary is I’.. We use a regukw polygon 170, which

contains the solution domain OS, to divide the whole infinite domain

$2 into two parts (see Fig. 1). Defining that the region within ro is

Q,. and the one out of ro is flOu~. ro may be placed very close t~

r,. If f7, itself is a regukrr polygon, then it is selected as 170.

A. Analysis of fl,n

Because the region L?,. is a finite domain, it can be treated by

conventional FEM. The electromagnetic field distribution can be

obtained from the scalar potential @(z, g) satisfying the Laplace’s

equation with associated Dirichlet or Neumann boundary condition.

The region Q,. is subdivided to triangular finite elements and the

stiffness matrix lI,n can be obtained by assembling each element

coefficient matrix. Assuming that the number of nodes on ro is MO

and the scalar potentials on ro form a column vector I?o of order

MO, the number of remaining nodes is Af,n and the corresponding

potentials form a column vector O,. of order Lf,n. Thus, the

functional within the region Cl,n can be obtained by
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Fig. 1. Similar discretzation of infinite region ucut.

Fig.2. Coupled microstrips (&=2c0, a= llb, h =b, w==3b, d=2b,
s = 1.5 b).

B. Analysis of flout

The region flout is a infinite domain. The FEM discretization is

taken as following: first, acoordinate center Owithin 170is selected.

Next, a set of infinite similar polygons of 170 are taken as shown

in Fig. 2. The point O is the similar center of polygons and the

constant< is similar ratio. The set of similar polygons are denoted as

rl, r2, . . ..rk. . . . andtheregion between rk_l and I’k is denoted

as kth layer. Each layer is divided into quadrilaterals of number

&f. -l bytherays out from similar center point Otonodesonro,

(Note that the polygon apexes must be nodes.) Then each quadrilateral

is cut into two triangles. It is necessary that the discretization of every

layer is similar as shown in Fig. 1. Assuming that scalar potentials

on rk is @~. After the element stiffness matrix is obtained by means

of conventional FEM, the layer stiffness matrix can be formed by

assembling all finite elements on one layer. It can be written as

(2)

where Ifo, If~, and A are all matrices of order Mo. Because every

layer is discretized similarly, all layer stiffnesses are identical. So, if

the functional of kth layer is

then, the functional of the whole infinite domain flout is a infinite

sum as

C. Synthesis of Qi. and ~otit

Considering both fkn and %~t, the functional of the whole Q can

be written as

F = Fin + FOut. (5)

Because the first derivatives of the functional (5) with respect to the

node variables should be zero, we can have a set of equations of

infinite order

{

X“~~@i~ + @~@O = O

l<f;@~n + I{:;(IIo + 1(0130 – A’@l = O
–A@. + K@l – A~@2 = O (6)

–li@k_l + I{@k – /iT@k+~ = O
. . .

where K = A’o + @. It is impossible to solve the (6) directly. It is

easy to prove that there exists a matrix X of order MO which satisfies

Ok+l = x+~ (7)

where X is called transfer matrix. Letting k = O, from (6) and (7)

we have

lf~;@~n + 1{::00 + 1(-000 – A~X@o = O (8)

Ii’Out = K. – A~X (9)

If?:@z. + K“:; I’O + Koutml = o. (lo)

Combining (6) and (10), we have

(11)

Imposing boundary condition within the solution domain f20, the

scalar potentials @zn and @O can be solved from (1 1). Then from

(7), the scalar potentials @k of the region floti, can be obtained.

D. Calculation of Transfer Matrix X

Combine (7) with (6), then

–A + KX – ATX2 = O. (12)

Let

()K –A
Rl= ~ o

()
R2= “ O

01
(13)

where 1 is unit matrix. From (6) we have:

(14)

Assuming that A and g are the eigenvalues and eigenvectors of X,

then

Xg = Ag. (15)

Letting k = 1 and @O = g in (14), (14) together with (7) and (15)

will take the form

“co‘AR’(3 (16)

Equation (16) can now be solved by any standard generalized

eigenvalue analysis computer package for the eigenvalues of number
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TABLE I
CAPACITANCE MATRIX FOR THE COUPLED MICROSTIUPSOF FIG. 2

Reference Shield ABC Higher Order Infinite FEM the paper

[6] [4] [4] ABC[4] [5]

Cll 10-10 0.9224 1.091 0.9249 0.9230 0.9311 0.9228

C12 10-11-0.8504 -0.4712 -0.8061 -0.8377 -0.8015 -0.8401

Fig. 3. Finite element mesh with transition layers.

21b10 and the associated eigenvectors, which include the eigenvalues

and the eigenvectors of transfer matrix X. Then we calculate

det (RI – JRz) = det
(

K – AAT –A

I –M )

=(-l) ”det(-A +/U{ - J2AT) (17)

where det denotes the determinant of matrix. Because the matrix h-

is symmetric, (17) is a symmetric polynomial with respect to X If

J # O is a eigenvalue then 1/A will be another one. It can be proved

from (7) that all eigenvalues of X must be not greater than one, so

it is easy to obtain the eigenvalues and the associated eigenvalues of

X. Then X can be obtained from (15).

E. Proof of (7)

The scalar potential within the infinite region flout satisfies the

Laplace’s equation. Assuming that the scalar potentials @O on r. is

known, all scalar potentials within flout can be uniquely determined.

That is to say, @1 can be uniquely determined by @O. Because the

Laplace’s equation and the associated functional are linear, 01 must

be determined linearly by @O. Then, there must exist a real matrix

which satisfies

01 = x%. (18)

Next, we take the linear transform x’ = <x and y’ = <y, where

& is the similar ratio between the layers of !&t. The positions

Of ro, rl, ..., rh now have been shifted to the position of

rl, r2, ..., rh+l, correspondingly. Since the scalar potentiak on

flout have the identical values in different coordinate systems, the

region within boundary 170 and the one within rl have the same

solutions if the initial condition on ro and rl are identical. Therefore,

if the scalar potentials @l is known, @Z can also be obtained

@2= x“@l. (19)

Continuing to make the same linear transform, we can obtain the (7).

III. APPLICATION

Consider the two coupled microstrips shown in Fig. 2. Its finite

element mesh is shown in Fig. 3. Because the number MO of

boundary nodes is related to the stiffness matrix bandwidth and the

computation time of the transfer matrix, some transition layers has

been applied in Fig. 3. The capacitance matrix is calculated by the

above method. Table I shows the numerical results obtained by the

present method, together with those obtained by using a p.e.c shield,

the ABC, the higher order ABC [4], infinite FEM [5], and other

method [6]. Table I indicates that the present method can yield more

accurate results.

IV. CONCLUSION

The above mentioned new FEM procedure is useful for two-

dimension] and three-dimension electromagnetic Laplace’s problems

with open boundary. Because the whole region is discretized with

infinite elements and no appropriate boundary is needed, the calcula-

tion error produced by the truncated boundary or absorbing boundary

condition is avoided. The numerical results show that the calculation

precision is very high.
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Thru Characteristics of a Coaxial Gap

(FDTD Model and Measurements)

Bruce G. Colpitts

Abstract-Thrn characteristics of a coaxial cable interrupted by a small
gap are modeled and measured. Finite-difference time-domain (FDTD)
modeling is applied in cylindrical coordinates to semirigid coaxial cable

and to the intervening gap material. Both dispersive and nondispersive

gap materials are investigated. Gap loss and phase shift are accurately
predicted by this two-dimensional model which acconnts for TEM and

TM modes in the gap and coaxiat apertures. An application of the model
is to establish reference data for thin sample permittivity or moistnre
measurements.

I. INTRODUCTION

A FDTD model m cylindrical coordinates is presented for a coaxiaf

cable and intervening small gap. That is the cable is severed and a

gap of up to one probe diameter (3.58 mm) is opened between the

ends. Modeled results are verified with measurements to demonstrate

accuracy for severaf gap sizes and materials. The coaxial gap is

proposed as a sensor for very localized perrnittivity measurements

of thin samples as an alternative to the coaxial reflection method

which requires stacking of thin samples [1], [2] or the semiempirical

approach used in [2] which requires two measurements of the same

sample. Neither method is suitable for continuous thin sample mois-

ture measurement. Since FDTD results are not readily invertible the

procedure for determination of permittivity would be to characterize

the gap response for a number of materials or moisture levels as part

of calibration and to then use an interpolation procedure to determine

the actual permittivity from the measured values. With sufficient

computational speed an iterative solver would be feasible. This paper

presents the FDTD numerical model along with measurements of

two thin samples for verification. This presentation deals with the

transmission response of the gap while in [3] the reflection properties
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of the coaxial cable have been considered and found to be accurately

predicted by this approach. Now with the reflection and transmission

properties well modeled and through the use of [4] one can either

iteratively or through a look-up procedure determine the material

properties.

II. NUMERICAL ANALYSIS

A lossless and nondispersive cable dielectric is assumed while the

gap material may have loss and dispersive characteristics. Dispersion

is accounted for through recursive relations similar to those in [5].

The model is two-dimensional with the center of the center conductor

forming a line of symmetry as in Fig. 1. This two-dimensional model

accounts for TEM and TM modes at the apertures and throughout the

gap but is not capable of modeling TE modes. This is not expected to

be a limiting factor since the actual problem has circular symmetry

and thus there are no mechanisms to excite TE modes [6]. Due to

the small cable size chosen for this study and the need to precisely

model gap details a cell size of 0.2 mm is chosen. This yields 52

cells from the inner conductor to the outer conductor in 3.58 mm

(O.141”) cable or’ 392 cells per wavelength at 26.5 GHz. With this

small element size the Courant condition requires a correspondingly

small time step, in the tens of picosecond range, depending upon the

dielectric material selected. Field components used in this solution are

the axial and radial electric fields and the circumferential magnetic

field. Absorbing boundaries are of the first order Mur [7] type applied

to the axial electric field while the line of symmetry is accounted for

through symmetry of the magnetic field. Governing field equations

in cylindrical coordinates are given in pseudo code form below for

dispersive materials where the Debye equation and an additional

conductivity term are used to describe their frequency dependent

behavior as follows

C“(w)= cm+ ‘S–,6=’ —jg.
l+ JWTO

(1)
Weo

Where the terms are defined as follows with their corresponding

values for water at 25° shown in brackets, cm = permittivity at infinite

frequency (4.9), cs = static permittivity (78.52), TO = relaxation time

(8.38 x 10-’2), a = conductivity (0.0), and UJ= angular frequency

~C”+’/2(1, J) = 17&’/2 (1,J) + F *((17An(1+ l,J)

– EA’(I,J))–(EB” (I,J+l)– ER”(I,.J))(2)

ERn+l(I, J) = B *ERn(I, J) + c’ *(He’’+ ’/’(I, J – 1)

– HCn+l/2(1, J))+ D* SR”(J,J)

SRn+l (1, J) = A *SRn (1, J)

+ 0.5 *(A *ER”(l,J) +13 R”+ ’(l, J))

EA”+I(I, J) = B *13 A”(1,.J) + E “(HC”+’/2(1, J)

– HCn+l/’(I – l, J)) + C *( HC(l. J)

– HC(l– l,J))+D *SAn(l, J)

SA”+’(I>J) = A *sAn(r, J) + 0.5 *(A *EA”(I, J)

+ EAn+l (1, J))

(3)

(4)

(5)

(6)
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